Safeguarding Hessian Approximations
in Trust Region Algorithms

Richard G. Carter?

Technical Report 87-12, June 1987.

1 Mathematical Sciences Department, Rice University, Houston, Texas, 77251-1892. Research sponsored by DOE
DE-FG05-86ER 25017, SDIO/IST/ARO DAAG-03-86-K-0113, and AFOSOR 85-0243.



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
JUN 1987 2. REPORT TYPE 00-00-1987 to 00-00-1987
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Safeguarding Hessian Approximationsin Trust Region Algorithms £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Computational and Applied M athematics Department ,Rice REPORT NUMBER
University,6100 Main Street M S 134,Houston, T X,77005-1892

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 28
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



Safeguarding Hessian Approximations in Trust Region Algorithms

Richard G. Carter

Abstract. In establishing global convergence results for trust region algorithms applied to
unconstrained optimization, it is customary to assume either a uniform upper bound on the
sequence of Hessian approximations or an upper bound linear in the iteration count. The former
property has not been established for most commonly used secant updates, and the latter has only

been established for some updates under the highly restrictive assumption of convexity.

One purpose of the uniform upper bound assumption is to establish a technical condition we
refer to as the uniform predicted decrease condition. We show that this condition can also be
obtained by milder assumptions, the simplest of which is a uniform upper bound on the sequence
of Rayleigh quotients of the Hessian approximations in the gradient directions. This in turn sug-
gests both a simple procedure for detecting questionable Hessian approximations and several

natural procedures for correcting them when detected.

In numerical testing, one of these procedures increased the reliability of the popular BFGS
method by a factor of two (i.e., the procedure halved the number of test cases to fail to converge
to a critical point in a reasonable number of iterations). Further, for those problems where both
methods were successful, this safeguarding procedure actually improved the average efficiency of

the BFGS by ten to twenty percent.

Key words. Unconstrained optimization, trust region methods, secant methods, quasi-

Newton methods, global convergence.
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Safeguarding Hessian Approximations 1

1. Introduction. Trust region algorithms are an important class of iterative methods that can

be used for solving the unconstrained minimization problem

minimize f (z) (1.1)
z€R™

where f:IR" —IR is continuously differentiable with gradient g:R"™ — R" and Hessian

V2f:R™® = IR™", At each iteration k, the function f is approximated by the quadratic model

1
Ye(z) = f(m)+9(2) (& —z) + 7z - 2)" B(s — ) (12)
where B, ER"*" is a symmetric matrix intended to approximate V2f (). A new iterate 24, is

then generated by solving (perhaps approximately)

minimize P ()
2€R" (1.3)
s/t |lz—a |l <A

The positive scalar Ay, known as the trust radius, is adjusted at each iteration to ensure that Py Is
a reasonably accurate approximation to f over the trust region: {2: ||z — 2, || <A,}. More com-

plete descriptions can be found, for example, in {8], [13], [24], and [27].

The literature contains global convergence results for many different implementations of the

trust region method. If the Hessian of f is uniformly bounded and f is bounded below, then the

condition
1B [l < Bo, 0<Bp< o0 (1.4)
is sufficient to establish klim [lg¢ || =0 for most implementations, while the condition
00
B [l < Bo(1+k), 0<Bo<oo (1.5)
is sufficient to establish the weaker result Iikm inf || g; || =0 (see, for example [24] and [22]).
—00

In the event that an analytic expression for the Hessian is impractical and a finite difference
approximation is too expensive, it is customary to use one of the secant methods to compute the
model Hessian By ([7], [8]). Unfortunately, the question of whether these methods satisfy bounds

of the form (1.4) remains open. Condition (1.5) can be established for the popular BFGS secant
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Safeguarding Hessian Approximations 2

method, but only under the highly restrictive assumption that f is convex [20].

One of the ways that conditions (1.4) and (1.5) are used in proving global convergence is to

establish that, for every iteration where g(z;)# 0, the approximate solutions to (1.3) satisfy

Vi (26) — Vi (T 4a) 2 ';_ﬂl g () || min {Ak: _Hg_l(;:)_ll_} (1.6)
Ve () — Vi (2 1) = %ﬂx g () || min {Ah ﬂ!—l%%} (1.7)

respectively, where 8, > 0. However, (1.6) and (1.7) can also be established by the milder condi-

tions
9(2) " Big(2) < Bog(m)T g(z) (1.8)
and
9(2) " Beg(ax) < Bo(1+ k) g(z)T g(z) (1.9)
respectively.

Conditions (1.8) and (1.9) are no less of an open question for secant methods than are (1.4)
and (1.5). However, several natural methods are available for correcting B, so that
9(2) " Brg(m) = ¢(2)" V2f (24 )g(2:). Under the mild assumption that || V2f(z) || is uni-

formly bounded, these methods guarantee (1.8) and hence (1.6).

In this paper we present several procedures for safeguarding Hessian approximations. These

procedures were designed with the following goals in mind.

(a) Condition (1.6) must be satisfied at every iteration for some constants 8, and B,

independent of k.

(b)  The test used to determine when a correction is to be made should be inexpensive and

should be as scale invariant as possible.

{¢) Any corrections made should not change the invariance properties of the original

method. Furthermore, if used in conjunction with a secant method which produces

TR87-12 June 1987



Safeguarding Hessian Approximations 3

positive definite Hessian approximations, the corrections should also be positive

definite.

(d) In numerical testing, the safeguards must improve the overall reliability of the trust

region algorithm without significantly harming the efficiency.

Surprisingly, design goal (d) was actually exceeded by our procedures. Even though each correc-
tion involved extra work, the number of iterations typically needed for convergence decreased
enough so that the overall efficiency was improved by 10 to 20% for our test set. Moreover, one of
our procedures decreased the number of test cases that failed to converge in a reasonable number of

iterations by a factor of two.

It should be pointed out that (1.8) is not of itself sufficient to imply global convergence,
Bounds such as (1.4) and (1.5) are not only used to establish (1.6) or (1.7), but are also used to
establish conditions about how the trust radius is updated at each iteration. However, it is shown
in [2] that the sufficiency conditions on the trust radius updating procedure can be obtained if (1.4)

is replaced by the weaker condition

—BopTp <pTByp \ nonzero p€R". (1.10)

That is, global convergence can be established provided (1.8) holds and the eigenvalues of B, are
bounded away from —oo. For typical secant methods that force each B, to be positive definite,

the correction procedures presented in later sections are sufficient to give klim llge || =0.
00

The remainder of this paper is organized as follows. Section 2 presents nomenclature and
preliminary theory. Section 3 presents the procedures for safeguarding and proves that they
enforce (1.6). Section 4 presents our test results, and describes some of the alternatives investi-
gated during this study. We conclude the paper with a summary of results and a brief discussion

of some possible refinements to our safeguarding techniques.

TR87-12 June 1987



Safeguarding Hessian Approximations 4

2. Preliminaries. The following notation is used throughout this paper. The function
f:R* = R! has gradient g: R® — R" and Hessian V2f:R* — R***, The vectors {2} are the
iterates produced by the trust region algorithm, and p, =134 — 2. For brevity, fi will denote
f(z), gx will denote g(z;), etc. The notation || - || denotes the Euclidean norm when applied to

a vector and the operator norm induced by the Euclidean norm when applied to a matrix.

The predicted function reduction at the k** iteration is defined by

predi(p) = fi — Vi(zi +p)
(2.1)

1
== ngP - -2—PTB/¢P .

The function U(--) represents whatever procedure we are originally using to generate or update
our Hessian approximations {Bg} (i.., Byy1=U(By, pi, gk41 —9x)). The notation & denotes
w/ |lw || for nonzero w €RR". For any nonzero w € R® and symmetric B eR™™, ¢(B,w)

represents the Rayleigh quotient of B in the direction w:
c(B,w)=wTBw/wlw . (2.2)

This notation is appropriate since ¢ (B, w) also represents the curvature of the quadratic model ¥,

in the direction w.

Using this notation, (1.6) becomes

predy(ps) 2 5B llgw |l min (A, Il 11/80) (23)

We refer to this as the uniform predicted decrease condition.! Similarly, (1.3) becomes

minimize (— predy(p))

(2.4)
s/t lp Il <A,
or the trust region subproblem, and (1.8) becomes
¢(Bi, q) < Bo - (2.5)

1 This terminology helps distinguish between conditions (1.6) and (1.7). The word “uniform’ refers to the fact that
the denominator of the last term, 8, , is not a function of k.

TR87-12 June 1987



Safeguarding Hessian Approximations 5

A variety of methods are available for computing approximate solutions to the trust region

subproblem. In general, these methods satisfy

predi(pi) > Bomin {—predi(p) s/t p €54, |lp || < A4} (2.6a)

and

How I < Bz iy, (2.6b)

for some subspace S; and constants 8,€(0,1), f3>1. Algorithms which satisfy (2.6) for the
choice Sp = R" are usually referred to as Hebden-More (see [12], [13], and [16]), optimal locally con-
strained (OLC) (see [10]), or hookstep (see [8]) methods, and typically require between one and two
matrix factorizations per iteration. Other methods select a subspace S, of smaller dimension in
order to avoid these factorizations. The dogleg method of Powell (18] and the double dogleg of
Dennis and Mei [6] solve the trust region subproblem over a piecewise linear path embedded in
span {— g, — By 'g;}. Steihaug [28] considers a conjugate gradient method in which a sequence of
trial steps pf, =1,2, - - - are generated that minimize the quadratic model over a sequence of
expanding Krylov subspaces Sf=span {—g;,B,~Big,..., —B,'q:}. The procedure continues
until either p, is a sufficiently accurate global minimizer of the quadratic, or the piecewise linear
path defined by the trial steps intersects the boundary of the trust region. All of these methods
satisfy (2.6) with S defined to be span {— g;}. Given this minimal property, it is fairly straight-

forward to show that (2.5) implies the uniform predicted decrease condition (2.3).

LEMMA 1. Let w; and g; be nonzero vectors in IR" and let 6, be the angle between w, and

— g - Consider the problem

minimize (— pred,(p))

(2.7)
s/t p=ocw,|lp|l <A
where ¢ (By, w;) and cos ©; are not both zero. A vector p " solves (2.7) only if
R cos ©
_ g Il k (2.8)

= ——— ),
C(Bk;wk) *

with ||p” || <A and ¢(B, w;) >0, or

TR87-12 June 1987



Safeguarding Hessian Approximations 8

P’ =Dy, (2.9a)
or
p f = —Ak'li)k . (29b)
Furthermore, if (2.8) solves (2.7) we have
. 1
predi(p”) = 5 llok |17 cos®0y /¢ (By, wi ), (2.10)

while if (2.9a) or (2.9b) solves (2.7) we have

. 1
predi(p”) > —2—00591; [lge Il Ak . (2.11)

Proof. Problem (2.7) is simply the minimization of a quadratic in one dimension subject to

upper and lower bounds. Substituting p = aw; and cos(8;)=— gfwy /(||g: || ||we ||) into (2.1),

we can write

g(@)=—pred(a w, )

o? . (2.12)
=—a(cos O || gy || 1w ||)+‘2— [lwe [|%¢ (Bg, wy)

and transform problem (2.7) into

(i)

minimize ¢(a)

(2.13)
s/t lal<ay/ Hw I

If ¢(By,w;) >0, it is easy to establish that (2.8) and (2.10) hold provided the constraint is
inactive. If the constraint is active, then (2.9) and (2.11) follow from (2.8) and (2.13) since

sign (o) = sign (— gf'wy) and & ||w, || < cos®, |l gk [1/¢(Bi, we) so that

¢ (B, w) }

* * ——‘ w,
g(a’)= [ |l kg “{ 2 o | cos 8 || g ||

< —a |lw || cos O |l g 11{1 — %} (2.14)

1
S—?Akcosek e Il

TR87-12 June 1987
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Hence (2.11) holds.

(ii) If e¢(Bi, w;) <0, then the constraint is necessarily binding, and (2.7) is solved by (2.9a)

and/or (2.9b). Then (2.12) immediately implies (2.11). o

THEOREM 2. If there exist 8, > 0 and 83 > 1 such that (2.6) is satisfied at every iteration
and g € Sk, then (2.5) is sufficient to imply the uniform predicted decrease condition with 8; = 8s.

Moreover, if w, € S, is a nonzero vector satisfying

¢(By,w) < By (2.15)

for some @, > 0, then (2.6) implies

1 .
predi(pr) > Eﬂgcose,, || g || min {Ak,cos O, H;;, I }, (2.16)
4

where 6, is the angle between w;, and — g, .

Proof. Applying Lemma 1 to (2.6) with w; =— g, immediately establishes that (2.5) implies

(2.3). Equation (2.18) also follows immediately from Lemma 1. o

3. Safeguarding procedures. We now present three safeguarding procedures. The first is sim-
ple, direct, and can be applied to any method for generating Hessian approximations. This pro-
cedure first compares the curvature of the model in the gradient direction with an estimate of the
maximum curvature of the problem. If the model curvature seems too large, the model Hessian is
scaled using a finite difference approximation of the exact curvature ¢(V2f (z441),0x+1). The posi-

tive constants macheps and typz represent machine epsilon and an estimate of the typical size of

||1'k ||

Procedure 1
Given k > 1, ¢xy > 0, 2, Tr 41, Pk, 0k, gk+1, and By, do the following.

(1) Approximate VZf (z;,,) by some method: By, = U(B;,...) .

TR87-12 June 1987



Safeguarding Hessian Approximations 8

(2) Estimate the maximum curvature of the problem:
cr = max {1, Pi(gh41— 0k )/Pi DA} - (3.1)

(3) If ¢(Bys1, gk+1) > ¢ then apply a correction to By y:

(a)  Approximate ¢(V2f (2;41), gx+1) by finite differences:

1

¢ = (macheps)®(typz)/ |l geas Il , (3.2a)

= 9 Trer—f (2k+1 —€ 9k+1) —€ gkz-'i-lgk+l

= 2 7T
€ er19k+1

P = (3.2b)

(b) Scale Bg,:
If ¢ > 0, then set & = ¢, /c(Bg41, G 41),

else set @ = ¢ /¢(Bgt1, ge1)-

Set Bk+1: = aBk+1.

(4) Exit.

The next procedure is more sophisticated and makes use of the properties of secant updates

explicitly. Such methods are designed to satisfy the equation

UB,p,y)p =y . (3.3)

Thus, if p =p; and y = y = g1 — 0k, the update By, = U(By, p, 3 ) Will exactly interpolate the

change in the gradient:

Bk+1(xk+1 - a:,,) = Ok+1— 9k - (3-4)

Such methods have proven to be very successful. Of particular importance are methods which

have the property of hereditary positive definiteness:

(B positive definite ) = (By41 positive definite.) (3.5)

TR87-12 June 1987



Safeguarding Hessian Approximations 9

Many secant methods have this property provided yIp; > 0, so it is customary to forego the

update if y p, < 0. That is,

(vfpe <0) = (Bipu=B: ). (3.6)

Updates that satisfy (3.5) and (3.6) are said to be positive definite secant updates.

Our last procedure corrected Bi,; by wusing finite differences to try to force
¢(Bi+1, 9k41) = ¢(V2f (2441), Gh41)- By using (3.3), we can instead use finite differences to try to
force the stronger condition

Be 19k 41= VS (T 41) 941 - (3.7)
Procedure 2
Given k > 1, ¢,y >0, 4, Tp4q, Pk, 9k, 9k+1, and By, do the following:
(1) Approximate V2f (z;) with a secant update:

Ye = Gk+1— Gk (3.8a)

Biy = U(Bkypln 3//:) . (3~8b)

(2) Estimate the maximum curvature of the problem using (3.1).

(3) If ¢(Bygs1, gr+1) > ¢k, then apply correction to Byyy.

e=Vmacheps (typz)/ |lgrs1 |l (3.9a)
Pe=—€gk41, (3.9b)
Ve=9g(Tks1+ P — Grst - (8.9¢)
If pXy. >0, then
Biyi:=U(Bis1, 96 ¥, (3.10)
Else
Byyyi= (Ck/c(Bk+lr 9k+1)) By, (3~11)
End If.
(4) Exit.

TR87-12 June 1987
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A similar procedure has been used by Dixon [9] for constrained optimization with a com-
pletely different justification. Let [ be the Lagrangian function: {(z,\)= f(z)+ AT h(z), where
h:IR® -+ IR" is a set of m equality constraints and A €IR™ is the set of Lagrange multipliers of
the constrained problem. Dixon’s method performs an extra update on the approximation to the

Hessian of the Lagrangian, denoted ék. This update is of the form

B: =U (Bk ,GV,I(Q',,, >‘k)r V,l(l‘,‘ + evzl(zk: )‘k)) - Vzl(zkr >‘k )) ’ (3'12)

and 1s included to ensure that the search directions selected are descent directions with respect to a

particular merit function.

Both hereditary positive definiteness and the UPD condition are easily established for both of

these procedures under very mild conditions on f. The results are as follows.

THEOREM 3. Let ¢g > 0 and positive definite B, be given. If the update U(B,p,y) used by
procedure (1) or (2) satisfies (3.5) and (3.6), then each of these procedures generates a positive

definite Hessian approximation at every iteration.

Proof. Since ¢y > 0, we have ¢, >0 for all k. Now, suppose that for all ¢ <k, B; is posi-
tive definite. Then the “uncorrected’ B,,, will be positive definite by hypotheses (3.5) and (3.6).
In procedure (1), a is therefore positive and the corrected By, will still be positive definite. For
the same reason, any corrected B,,, generated by (3.11) will be positive definite, and by
hypotheses (3.5) and (3.6), any By, generated by (3.10) will be positive definite. Our result fol-

lows by induction. O

THEOREM 4. Let ¢y > 0, macheps > 0, and typzr > 0 be given. If ¢ is Lipschitz continuous

so that for some L < oo, ||g(z)—g(y)ll KL |lz—y || forall® z,y € R" , then the curvature
estimates {c;} generated by procedures (1) and (2) are uniformly bounded. Furthermore,

{c(Bs, g)} is uniformly bounded above for both procedures.

2 The assumption of Lipschitz continuity over the whole of R™ is made for convenience rather than necessity. A
smaller region can be used, such as any open convex set that contains the level set of f at z.

TR87-12 June 1987
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Proof. From the Cauchy-Schwarz inequality and Lipschitz continuity of g, we have
p,,T(g;,+1 — )/ pipe <L, and hence ¢; < max{cg,L}. In either procedure, a correction is done if
¢(Bi+1, 9k+1) > ¢x. Now, if ¢, <0 in procedure (1) or pTy,<0 in procedure (2), then the correc-
tion is simply Byyr:=(cx/¢(Bk+1, 9k+1)) Br+1, resulting in ¢ (B, Ge41) <max {co, L}. The
remaining two cases are as follows.

(1)  In procedure (1), ¢; is computed by (3.2b). Now,

1

Srar =T (@err— € ger) = [ 9(241 — N ge1) T (€ grar) AN (3.13)
0
so that
9 1
o = W“'—f(f 951 )(9 (Ze1 — N gear) — o)A
€9kt1 k41 0
1
2
< 5 Ngkan 1| 119(2e41 = Ne geir) = g 1 dX
elge 1% 0
, . (3.14)
K—F— L ||z —Negppy~= dX\
p “gk+1 ” { ” k+1 k+1 k+1 ”
<L.

Hence, if ¢, > 0, By, is replaced by (¢ /¢ (Bi41, gk+1)) Bis1, resulting in an approximation

which satisfies ¢ (B4, gx41) < L.

(i) In procedure (2), a correction is made by an extra secant update provided yI p. > 0, where
pe and y, are given by (3.9). The corrected By, will satisfy B, pe = y.. Premultiplying
by g,,I:,_l , using the Cauchy-Schwarz inequality, and invoking the Lipschitz continuity of ¢

allows us to write

€ ng+lBk+19k+1 = ng+1 (9(2k+1 — € Gk+1) — Tk41)
< ”.‘lk+1 ”TL ”Ik+1 —€0k41 — Tp41 “ (3-15)
= €L ||9k+1 ”2,

and thus ¢(Bg4, gk41) < L . Therefore, procedures (1) and (2) guarantee that in every

situation ¢ (B4, gr41) < max {cg, L} . a

TR87-12 June 1987
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The third procedure we present is similar to procedure (1), except any scalings of the Hessian
approximations are done before the update. This approach is motivated by the self scaling algo-
rithms of Oren and Luenberger (17] and the sizing algorithm of Dennis, Gay and Welsch [4]. Self

scaling algorithms set & = |p(gr1 — gx) |/ 2 Bi b, or equivalently

IPkT(gk+1 — g 1
a = 7 . (3.16)
Pk Dk ¢(By, pi)
The matrix B4, is then generated by
By = U(aBy, pr, %) - (3.17)

Sizing algorithms are similar, except that the modification is only done if
¢(By,2) > | 2&(9k+1—9:) |/p¥pi. Our procedure is obtained by substituting ¢, for

|ka(9k+l —o)l/ pip; and ¢ (B, gk41) for ¢(By, pi) in the above formula.

Procedure 3
Given k >1, ¢,y >0, 2, %44y, Pi» 9, Jk41, and By, do the following.
1)  Estimate the maximum curvature of the problem using (3.1).
2) Set oy =min{l, ¢, /¢(By, gkt1)}-
8)  Set By =U (04 B, px, %4 ) for yx = o1 — g -

4)  Exit.

We shall prove results for this procedure only for a specific secant update, the BFGS (see, for
example, [7], [8]):

B if y7p<o0

Usras(B,p,y) =
BppTBT  yyT (3.18)

" TBp y Tp otherwise .

This is probably the most popular positive definite secant update in use today.

TR87-12 June 1987
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THEOREM 5. Let ¢ > 0 and positive definite B; be given. Then procedure (3) generates a

positive definite Hessian approximation at every iteration if U = Uppgs.

Proof. Since ¢y > 0, each ¢, > 0 and every o > 0. Thus, if B, is positive definite, aB; is
positive definite. Proof that Upgpgs is a positive definite update satisfying (3.5) can be found, for

example, in [5]. Since By is positive definite, our result follows by induction. O

The next theorem uses the highly restrictive assumption that f is convex, and is therefore
not as strong as our results for procedures (1) and (2). However, this result is stronger than results
for the standard BFGS, in that we achieve ¢(By, gr) < By (which is associated with the strong

result klim |lgx || =0) rather than c¢(B;, gx) < Bo(1 + k) (which is associated with the weaker result

likm inf ||gx || =0.) The proof is almost the same as that used for the standard result (see [19],
—r 00

[21]).

THEOREM 6. Let ¢y > 0 and a positive definite matrix B, be given. If the Hessian of f is
uniformly bounded and f is convex on IR", then procedure (3) with U = Ugpgs generates a

sequence of Hessian approximations for which ¢ (B, g;) is uniformly bounded.

Proof. From Theorem 5, we know that each B, is positive definite. Since V2f () is uni-

formly bounded, there exists L such that [|[V2f(z)]||<L for all z & R". Now,

1
gk+1— 9k = [ VS (2 + Npi)pe @), s0 we have
0

1
P (g1 — ) = [ PFVES (m + 2pi)pe AN < L |l 112 (3.19)
0

From this we can deduce that ¢; <max {cq, L}, and hence ¢(a; By, gx4+1) < max {co, L} .

If pfy, <0, we have By, =, B; and ¢(Byyy, 9p41) <max {cq, L}. Otherwise,

Bipepi BT + v vl

By = oy By — oy .
P By px v px

(3.20)

1 1
Now, define H; =fV2f (zx + Apg)dX\ so that Hyp, = fvﬂf (=6 + 2Pk )PedX = Ghp1— 9k = ¥k -
0 0

TR87-12 June 1987



Safeguarding Hessian Approximations 14

From the convexity of f, we see that H; is positive definite or positive semidefinite, and thus there
exists Hy* satisfying (Hy*)? (Hy*) = H,. Similarly, there exists By * such that (B,*)7(B,*) = B,.
Substituting these expressions into (3.20) yields

(Bk V’Ph )(Bk %Pk )T
(B pe )T (B ")

(Hk%pk )(HI:%PI:)T
B* + (H#)T H* . 3.21
* * (He*pe )T (He*pi) ¢ (821

By = (BT |1 -

Defining v, = B, #p; and w; = Hi%p; leads to

351 B Gk = 0k (Be Gk1) T (1 — 0% 0)(Be G 41) + (Hi G 41) T (b o7 )(H* G 41)
<oy 11— 6,08 |2 1B *Gksr 112+ N [lg [ HEGe s 1) (3.22)
= oy || Be G4t |1+ | He G4 112,

so that

C(Bk+1; gk'H) S Ck +L S 60+2L . ] (323)

4. Numerical results. The three procedures of the last section were implemented in a trust
region algorithm based on the Dennis/Schnabel optimization code [8]. Approximate solutions to

the trust region subproblem (2.3) were computed with an optimal locally constrained procedure

([8], [10], [12], [16]). The BFGS method was used to generate updates U(B, p, y).

Twenty-six problems were selected from the standard test set of Moré, Garbow, and
Hillstrom [14]. These problems were NPROB = 1, 2, ..., 18 with the default problem dimensions,
and the variable dimension problems 6,7,8, 9,13, 14, and 15 with dimensions
n =10,9, 18,6, 6, 10 and 20 respectively. An ‘‘easy quadratic’” problem with n =4 was

included as an additional control.

Table (1) shows a representative sample of the results obtained by our procedures when the
algorithm was executed from the standard starting point. The numbers 0 to 3 in the first column
represent, respectively, the unmodified BFGS, procedure (1), procedure (2), and procedure (3). The
next two columns represent the problem number and dimension. “Itn” represents the number of
iterations performed, and “C” represents the number of corrections done. The “#f” and “#g”
columns represent the number of function and gradient evaluations required. The “f*” and

“J|g* ||”” columns represent the function value and the norm of the gradient at the final iteration.
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The two numbers in the ‘“performance measure” column represent two different ways of
measuring algorithm performance. Criteria (A) is defined as the sum of the number of function and
gradient evaluations, while criteria (B) is the number of function evaluations plus n times the
number of gradient evaluations. Thus the first column is the best measure if gradient evaluations
are inexpensive, while the second column is the best measure if gradient evaluations are much more

expensive than function evaluations.

The results for all twenty-six test problems are summarized in Table (2). Corrections were
made in 10-20% of the iterations®. Even though these corrections required an extra function
evaluation in procedure (1) and an extra gradient evaluation in procedure (2), the reduction in
total number of iterations is sufficiently large to actually reduce the number of equivalent function
evaluations. Problem 8 with n = 18 is the most striking example of this. The algorithm using the
unmodified BFGS is still far from the solution after 200 iterations. Procedures (1) and (3) have
not converged either, but are much closer (as measured by ||gog ]| and f g0 being roughly 100
times smaller for procedures (1) and (3) than for the BFGS). Procedure (2) is the clear winner,

having converged in 89 iterations.

Table (3) presents the data from Table (2) in a normalized format. Each of the performance
indicators shown in the table is normalized by the value from the unmodified BFGS method with
the exception of the second column under ‘“‘normalized count of corrections,” which instead denotes
the fraction of iterations at which a correction was performed. The first 4 rows represent the com-
plete data set, while rows 5 to 8 represent only those test cases for which all of the methods suc-
ceeded.* We see that options(1) and (3) improved most performance indicators by roughly 10%,

while procedure (2) increased performance by 15 to 20%.

To investigate how reliable our procedures were, we ran the previous set of test cases again

with different starting points (10* and 100* the default values) and included an additional 12

3 It is worth mentioning that (3.11) (the naive correction done in procedure (2) if the secant correction cannot be
guaranteed to produce a positive definite matrix) was never invoked in any of our test runs.

1t can be argued that this reduced data set gives a better measure of the relative efficiency of algorithms.

TR87-12 June 1987



Safeguarding Hessian Approximations 16
Table (1)
Performance of algorithms on representative problems.
Performance
P Pb n Itn C #f #g measure f(z") Hg(=*) |
(A) (B)

0 1 3 27 0 36 27 63 117 0.144d-18 0.68d-08
1 25 2 38 25 63 113 0.474d-15 0.13d-06
2 26 4 41 30 71 131 0.30d-14 0.10d4-05
3 27 8 37 27 64 118 0.36d-14 0.19d-05
0 2 6 45 0 49 45 94 319 0.57d-02 0.27d-05
1 35 3 45 35 80 255 0.574-02 0.99d-06
2 35 3 41 38 79 269 0.57d-02 0.21d-05
3 36 4 47 36 83 263 0.57d-02 0.24d-05
0 5 3 29 0 39 29 68 126 0.19d-18 0.15d-08
1 19 13 39 19 58 96 0.624d-19 0.87d-10
2 20 6 27 26 53 105 0.86d-16 0.34d-07
3 18 7 21 18 39 75 0.11d-13 0.15d-06
0 8 2 104 0 137 104 241 345 0.84d-05 0.404-05
1 77 1 99 77 176 253 0.84d-05 0.38d-05
2 42 1 64 43 107 150 0.84d-05 0.89d-06
3 77 1 118 77 195 272 0.84d-05 0.144d-05

0 18 200* 0 203 200 403 3803 0.474-01 0.59d+00
1 200* 2 231 200 431 3831 0.174-03 0.21d-03
2 89 2 122 91 213 1760 0.14d-03 0.14d-05
3 200% 36 210 200 410 3810 0.174-03 0.75d-03
0 13 2 12 0 13 12 25 37 0.20d-13 0.26d-06
1 11 2 14 11 25 36 0.124-10 0.47d-05
2 9 3 11 12 23 35 0.26d-14 0.114-06
3 11 1 12 11 23 34 0.19d-12 0.59d-06
0 6 21 0 23 21 44 149 0.274-03 0.87d-05
1 28 4 37 28 65 205 0.27d-03 0.17d-05
2 17 12 19 29 48 193 0.27d-03 0.11d-05
3 24 6 31 24 55 175 0.27d-03 0.17d-05
0 15 4 48 0 54 48 102 246 0.61d-09 0.14d-05
1 27 6 37 27 64 145 0.12d-08 0.58d-05
2 33 6 37 39 76 193 0.31d-08 0.50d-05
3 32 4 38 32 70 166 0.14d-09 0.50d-06
0 20 48 0 54 48 102 1014 0.30d-08 0.314-05
1 33 11 48 33 81 708 0.16d-10 0.85d-05
2 33 6 37 39 76 817 0.154-07 0.11d-04
3 38 10 51 38 89 811 0.16d4-09 0.41d4-05
0 17 4 103 0 148 103 251 560 0.39d-14 0.25d-05
1 31 3 54 31 85 178 0.21d-16 0.12d-06
2 31 4 42 35 77 182 0.59d-14 0.16d-05
3 86 9 120 86 206 464 0.16d-15 0.27d-06

* Algorithm exceeded maximum number of iterations allowed.
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Table (2)
Summary of performance of algorithms on 26 test problems.
Number Number Number of Performance
Procedure of of evaluations measures
iterations corrections f q (A) (B)
0 1047 0 1309 1047 2356 9525
1 902 108 1329 902 2231 8963
2 696 111 946 807 1753 6637
3 939 186 1268 939 2207 8923
Table (3)
Test data normalized with respect to control (unmodified BFGS).

Normalized Normalized Normalized

Procedure count of count of performance

iterations corrections evaluations measures

: f q (A) (B)
0 1.00* 0.00 1.00 1.00 1.00 1.00
1 86™* 12 1.00 .86 .95 .94
2 66* .16 72 77 .74 .70
3 90" .20 .97 .90 .94 .94
0 1.00* 0.00 1.00 100 1.00 1.00
1 837 14 .98 83 91 89
2 727 17 .75 .84 .79 .85
3 .867 .18 .93 .86 .90 .88

* Data from all 26 test problems.
* Data from reduced set of the 23 test problems for which all methods converged.

problems of larger dimension (n =10 to n =68) . The unmodified BFGS failed® on 21 out of the
144 cases while procedures (1), (2), and (3) failed on 16, 12, and 20 respectively. Thus, at least for
this test set, procedure (1) increases the reliability of the BFGS method by 25%, and procedure (2)
increases the reliability by 45%. Other performance indicators for this expanded test set are

roughly comparable with those shown in Table (3), with the exception that procedures (1) and (3)

performed relatively poorly on the large dimensional problems.®

Given the excellent numerical performance of procedure (2), the remainder of our investiga-
tions focus on this technique. In order to examine performance of this procedure when invoked
with a greater or lesser frequency, we devised alternative tests for triggering the extra update. The

first such test defines

5 Several criteria were used to define “failure”, such as still being far from the solution after 200 iterations.

®Each option failed on the same problems that the unmodified BFGS failed on. Furthermore, procedure (1) was less
efficient by a factor of 30%. However, this is not conclusive due to the small size of the problem set.
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o =max {mocs_y, P (gk+1— 0k )/ P4 Pi} (41)

and triggers an extra update whenever

¢ (Byt1, Jr+1) > micy, (4.2)

where m, € [0, 0] and mg€[0,1] are constants. The constant m, controls how much ‘“memory”
the test has of previous curvature estimates. For example, my=0 corresponds to
¢; = max {0, p,,T(g,,.H —g)/ pdpx): the current curvature estimate. The constant m; allows a more
direct control of how often corrections are triggered: m,; = oo corresponds to the unmodified BFGS
method, while m; = 0 corresponds to performing an extra update at every iteration. We tested this
new triggering formula on the original 26 problems using two different starting points for each (1 *
and 10* the default wvalues) with the values m;€{c0,4,2,1,05,0250} and
mo€{1,0.9,0.7,0.5,0.01}.

Several trends were noticed among the performance indicators as m,; was varied from oo to 0.
The percentage of iterations at which the model Hessian B, was corrected varied monotonically
from 0% to 95%,” but the number of iterations required (as compared to the unmodified BFGS)
varied monotonically from 100% to 55%. The performance indicators for m,; >2 showed little
change from the BFGS in efficiency.® For 1> m,>0.25, the efficiency was improved by roughly
15% ( using criteria (A) ) and by 10% ( using criteria (B) ); for m;=0, the efficiency was
unchanged (using criteria’ (B) ) and improved by 20% ( using criteria (A) ). The number of

failures dropped from 8 to 2. Experiments with m, showed similar (although slightly less clear)

trends.

These trends can be summarized by saying the algorithm performs quite well for m; € [0, 1].
A value of m;=% and my=1 is suggested for typical problems, although m, € [0,%] and
mgy=1/100 may be preferable if the gradient is very inexpensive to evaluate or if reliability is very

important. Table (4) presents a small sample of our data from this part of the investigation.

TCorrections were not made at the initial and final iterations.

8B, was modified in fewer than 5% of the iterations, which is apparently not enough to improve efficiency. Howev-
er, even this small percentage was enough to roughly halve the failure rate for this test set.

9This is hardly surprising, since we have roughly halved the number of iterations while doubling the number of gra-
dient evaluations per iteration.
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Table (4)
Test of triggering corrections using equations (4.1) and (4.2).
Normalized Normalized Normalized Normalized
m, mo count of count of performance count
iterations  corrections evaluations measures of
f q (A) (B) failures
o0 - 1.00* 0.00 1.00 100 | 100  1.00 1.00
1.0 1.00 0.75™" 0.09 0.76 0.82 0.79 0.79 0.50
0.5 1.00 0.79" 0.18 0.84 0.93 0.88 0.86 0.38
0.5 0.01 0.55" 0.95 0.57 1.07 0.79 1.03 0.25
o0 - 1.00°* 0.00 1.00 1.00 1.00 1.00 -
1.0 1.00 083" 0.11 0.83 0.92 0.87 0.90 -
0.5 1.00 0.76 * 0.24 0.80 0.95 0.87 0.90 -
0.5 0.01 0.56 " 0.94 0.55 1.08 0.78 1.02 -

* Data from full set of 52 test cases.
* Data from reduced set of the 43 test problems for which all methods converged.

An alternative to the test ¢ (B, gi41) > ¢ is suggested by equations (2.15) and (2.16) in
Theorem 2. From the secant equation and the Lipschitz continuity of g, we have that the

unmodified update satisfies

pEBiipe <L |]pi 12 (4.3)
so that

c(Besr, pe) <L . (4.4)
Let ©,,, be any fixed angle in (0, lzr—), and let ©,,, be the angle between p, and gp4;. If

08 O 41 > c0s O, and if py € Sp4y, then by (2.16) we have the uniform predicted decrease condi-

tion (2.3) at the next iteration without requiring a correction (f; and f; are taken to be

L /cos O, and Bycos B, respectively). For example, if 6,4y 2> 6= —j—;— and By =1, we have
that

predey(prsr) > max {predyi(p): p = ape, |lp || < Bpsa}

1 | lgwas

> 5 °os O 41 || gk 41 ||min {AHD c0s Oy L (4.5)
1.V9 . “9/:+1 ”

> -2-(—2—) I g5 +1 I{min {AHI’ V2L, )

For OLC type methods of computing trial steps, Sy is taken to be R"; hence for these methods we

can trigger a correction if
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€08 O 41 < €08 O,y (4.6)

Numerical tests were performed using this alternative criteria (by itself and in several Boolean
combinations with the original test) for various values of ©,,. Although this new trigger was also
successful in improving performance and reliability, our results were somewhat erratic as 6,,,, was
changed in comparison to the uniform performance increases exhibited by the original trigger as
m; and m, were changed (within the interval (0, 1]). At present, we therefore recommend the ori-

ginal test over this alternative.
6. Concluding remarks.

5.1. Summary. An important element in the global convergence theory of trust region algo-
rithms is the uniform predicted decrease condition, which is usually established by assuming a uni-
form upper bound on the sequence of Hessian approximations. However, uniform predicted
decrease is also implied by the weaker condition of a uniform upper bound on ¢(By, g;). This con-
dition can be enforced in secant methods by several procedures. The best one of these procedures
involves performing an extra secant update to correct By in the gradient direction at every itera-
tion at which ¢ (B, g ) is larger than an estimate of the maximum problem curvature. Numerical
testing suggests that this technique increases the reliability of secant methods by a factor of two or

more, while actually increasing several measures of algorithm efficiency by 10 to 20 percent.

It should be pointed out that this increase in efficiency is a surprising result, particularly
since the increase is remarkably insensitive to how frequently corrections are performed. Our ini-
tial goal was merely to find a procedure which increased the reliability of secant methods without
immoderately decreasing the efficiency. We also expected our procedure to work best when correc-

tions were done rarely; our experiments showed instead the utility of frequent extra updates.

Another point that should be restated is that the uniform predicted decrease condition is not,
of itself, sufficient to imply global convergence. This condition must be coupled with conditions
about how the trust radius is updated at each iteration. Specifically, global convergence can be

shown if (2.3) holds and there exists ¢, > 0 such that
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Ay <éllge 11/Bo= Dppr > A . (5.1)

Traditional global convergence proofs establish (5.1) by again using the assumption of a uniform
upper bound on the sequence of Hessian approximations, so that the weaker condition (of bounded
Rayleigh quotients in the gradient directions) used in this paper might seem irrelevant with respect

to the overall theory. However, (5.1) can also be established (see [2]) by a weaker condition: that

(2.3) holds and that there exists 83 € [0, o) such that

— B3 < ¢(By,p) forall nonzero p €R™ . (5.2)

That is, global convergence can be established if ¢(B;, g;) is bounded above and if the eigenvalues
of B, are bounded away from —co. For positive definite secant methods, (5.2) is automatic and

the procedures of this paper guarantee global convergence.

5.2. Extensions. The details of the procedures we have presented have been purposefully kept
simple for clarity; many refinements are possible. For example, the calculation of the finite
difference steplength variable ¢ was dependent on a fixed parameter fypz, which represented an

estimate of the typical size of ||z ||. A better approach would be to prespecify some typmin > 0

and use typz, =max { ||z ||, %( Nz 11 + ll2e—1 1]), tupmin}. A variety of other strategies for com-

puting € are discussed [8] and {15].

A more important topic not yet mentioned is the subject of scaling matrices. Most imple-
mentations of trust region methods replace the spherical trust region heretofore assumed with the
hyperellipse ||Dyp || < A, where Dy is a nonsingular scaling matrix. The trust region subprob-

lem is then

minilranize V(e +p): ||Dep || < A% . (5.3)
pER"

This can be converged back to standard form by making the change of variables

T = DkZ (54)

so that ¢ , = Dyx,, p = Dyp , etc. Defining
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. . e 1 e .
Pe(fe+p)=t(ze+p)=fe+9ip +5P TByp (5.5)
with
de=DTg (5.6)
and
B, = D7TB. D! (5.7)

allows us to replace (5.3) with the problem

minimize Pz +p ): llp || < Ax .
inim; (5.8)

A step p; can then be obtained by computing an approximate solution p ; to problem (5.8) and

inverting transformation (5.4). If {D,} and {D;"'} are uniformly bounded, the global convergence

results of this paper can still be obtained provided there exists 8, < oo such that

¢(Bi,d &) <Bo- (5.9)

Our safeguarding techniques should therefore be used to enforce either
¢(By,gx) < (5.10a)
with ¢y =max{ ¢ sy, P {(Jrn1—9k)/ PP} 0

(B, (DiD) @) < e (5.10b)

depending on which is more convenient for a given implementation.

Some other possible refinements are based on secant updates which preserve past information.

Davidon [3] and Schnabel [23] have developed classes of updates which satisfy
Biyipr = grpi—9  and  (Bey—B)Up = 0, (5.11)

where U, € R®™™™ is a matrix whose columns form an orthonormal basis for the space spanned by
one or more previous search directions. Sorensen [25| suggests a broader class of updates which

satisfy the weaker conditions
Biy1ps = Giyi— 0 and Uf(Bey —Bi)Up =0 (5.12)

One application of an update which can satisfy (5.11) is obvious: under many conditions our extra

update in procedure (2) can be executed so that
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Biyipe=yc and (B — Bipy)p =0 (5.13)

(where l;‘,,.H = U (B, Pk, ¥:)), and hence our new approximation to the Hessian satisfies both
Biy1pi =y and By pe= Yy, Similarly, procedure (3) can be modified using updates satisfying
either (5.11) or (5.12) so that our Hessian approximation satisfies both Bj4 pr =y, and

91 Bet10k41/ 9841 k41 = T (Where T, is computed as in procedure (1)).

If updates satisfying (5.11) or (5.12) are used, the alternative trigger (4.6) previously sug-
gested might also become competitive with triggering extra updates whenever ¢ (B, gg41) > Ck-
Rather than defining ©,,, to be the angle between g, and p,, we can define it to be the angle
between g¢;,, and the ‘“‘nearest’” element of span {pi, Pi—y, ..s Pk—m}. Specifically, cos©; . =

9 (Q91)/ lgx 11 11 Qu s || where @, is the projection matrix Uj Uy

This list of possible refinements to our techniques is not meant to be exhaustive, but should
be indicative of topics for future research. Our numerical tests were confined to the BFGS method,
but our procedures can be applied to other secant methods, such as the DFP update and the “rank

one’’

update. Safeguarding seems particularly appropriate for these two updates, since they are
usually very effective, but under certain circumstances may generate Hessian approximations with
inappropriately large eigenvalues. A numerical comparison of the BFGS, DFP, and rank one
updates with and without safeguarding by procedure (2) is currently being performed. Our pro-
cedures can also be easily extended to such classes of updates as sparse secant methods and struc-

tured secant methods. A description of procedure (2) as applied to a structured secant method

associated with nonlinear least squares problems can be found in [1].

10Depending on how the algorithm is defined, this set may also include p. steps from one or more past iterations.
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